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Abstract

This paper presents an approach for the generation of closed mani-

[old surface triangulations from CAD geometry. CAD parts and
assemblies are used in their native format, without translation, and a
paws native geometry engine is accessed through a modeler-inde-
pendent application programming interface (API). In seeking a
robust and fully automated procedure, the algorithm is based on a
new physical space manifold triangulation technique which was
developed to avoid robustness issues associated with poorly condi-
tioned mappings. In addition, this approach avoids the usual ambi-
guities associated with floating-point predicate evaluation on
constructed coordinate geometry in a mapped space. The technique

is incremental, so that each new site improves the triangulation by

some well defined quality measure. Sites are inserted using a variety

of priority queues to ensure that new insertions will address the

worst triangles first. As a result of this strategy, the algorithm will

return its "best" mesh for a given (prespecified) number of sites.

Alternatively, the algorithm may be allowed to terminate naturally

after achieving a prespecified measure of mesh quality. The result-

ing triangulations are "CFD-ready" in that: (1) Edges match the

underlying part model to within a specified tolerance. (2) Triangles

on disjoint surfaces in close proximity have matching length-scales.

(3) The algorithm produces a triangulation such that no angle is less

than a given angle bound, a, or greater than _ - 2a. This result also

sets bounds on the maximum vertex degree, triangle aspect-ratio

and maximum stretching rate tbr the triangulation. In addition to the

output triangulations lot a variety of CAD parts, the discussion pre-
sents related theoretical results which assert the existence of such an

angle bound, and demonstrate that maximum bounds of between
25 ° and 30 ° may be achieved in practice.

1. Introduction

Mesh generation has long been recognized as a bottleneck in

the CFD process. [1] The last decade has witnessed a myriad

of international and domestic conferences and symposiums

aimed at focusing research on this impediment. Unstructured,

hybrid, and Cartesian mesh methods are all aimed at simpli-

lying the mesh generation task for complex configurations.

The success of these approaches is well represented in the lit-

erature and with an appropriate initial surface triangulation,

the volume mesh generation can generally be accomplished

in a relatively automated fashion in minutes-to-hours on an
[2 71

engineering workstation. - As faster processors, with bet-

ter access to memory, continue to shrink the wall-clock time
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required for both mesh generation and flow solution, the

man-hour intensive task of generating an initial surface trian-

gulation from a CAD geometry promises to become an ever

larger fraction of the bottleneck. Additionally, if the user

must be involved in the extraction of surface data from CAD,

then mesh adaptation - which involves enriching the discreti-

zation on the body surface - will remain an elusive goal.

Historically, surface discretization has been one of the least

automated steps in the numerical simulation cycle, and for

good reason. Due to its dependence on implicitly defined sur-

faces and curves, CAD data is by its nature imprecise. Vari-

ous geometry engines typically demonstrate discrepancies in

their interpretations of the same entities. As a result, "repair"

of CAD surfaces has become an area of substantial

research. Is/l°1 This problem is exacerbated when CAD mod-

els are output in many of the standard formats, since such

files frequently do not include important topological and con-

struction int_brmation along with the entity geometry.

In addition to the vagaries of the data and modeling systems,

many surface triangulation schemes treat surfaces individu-

ally. Thus, the length scale of the triangulation on a particular

component may not be commensurate with that of other com-

ponents which are in close proximity on the lull configura-

tion. In many interactive triangulation systems, it becomes

the user's role to identify such situations and enforce length

scale compatibility between nearby components.

In response to these and other requirements for user assis-

tance, many in the research and industrial CFD communities

have adopted an interactive paradigm for surface mesh gener-

ation. The commercial unstructured mesh generators in Refs.

[7],[10] and [11] all interact with CAD data through files

which have been translated from their CAD native environ-

ment to some standardized format (namely IGES ll2],

STEP 113] or STL I ]41).

This paper adopts an alternative paradigm. The approach

interfaces with the CAD system in a dynamic manner via

calls to CAD native routines. By accessing the model in its

native environment, this approach avoids translation to a for-

mat which can deplete the model of topological information.

This is important since it avoids the consistency conflicts that

I Recent releases of some of this software now supports "direct"
interfaces which do read parts in their native formats, however, this
practice is not the norm.
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can occur when two different geometry engines attempt to

infer topological information from imprecise data.

To avoid placing CAD specific calls in the software, we

access CAD tunction calls through an Application Program-

ming Interlace (API) known as CAPRI.[I.5] This library pre-

sents a standardized interlace to the application program for

various CAD systems. 1 CAPRI supports a variety of opera-

tions like truth testing, geometry construction, and entity

queries.

Maintaining the consistency of the models by direct manipu-

lation of CAD parts and assemblies is the first step that this

work takes toward building a robust method for surface trian-

gulation. A basic premise of this approach is that we resotvc

consistency problems on as simple a model as possible, and

maintain this consistency as the triangulation evolves and

becomes more complex.

1.1. Abstract Geometric Structures

Following the approach of Yap, [161our approach toward gen-

erating a robust geometric algorithm contends that a geomet-
ric structure, D, consists of four elements: 2

D = (G,_.,qb(z),z / (1)

Where the graph, G = (V, E) is a directed set of vertices, K

and edges, E. _ is a function describing the index labels of

the graph, qb is a geometric operator which represents the

consistency predicates for the connectivity and is a function

of the actual coordinates z. G represents a tessellation of the

vertices and is therefore purely combinatorial. A structure is

said to be consistent if the predicate _(z) holds.

As an example, a 2-D Delaunay triangulation algorithm usu-

ally makes use of an #tCircle predicate [17], _inCircle which

establishes G by insisting that the circumcircle of the triangle

Aa,b.c can contain no other vertex in the graph. If such a pred-
icate holds for every triangle in G, then this instance of the
geometric structure D is said to be consistent.

1.2. Robustness

Consistent CAD Models

This interpretation offers direct insights into the formulation

of a robust algorithm for creating triangulations of CAD vol-

umes. The rational B-splines used to describe surfaces in

most CAD systems are implicitly defined for physical space

coordinates of the geometry. Therefore, the constructors for
vertex geometry generally require a Newton solve carried to
some internal tolerance. Since the results of this construction

will be subject to both tolerance and round-off error, the sys-

tem may then "nudge" the constructed point, zi, to some

nearby exactly representable location (on an integer grid, for

example). If the geometry engine's predicate for determining
ifz i is on some surface, S is • (z;, S), is consistent then it

h CAPRI currently supports ProEngineer TM ParaSolids TM and
IDEAS TM with CATIA TM support in beta test.
2. Ref.[16l actually writes eq.(1) as D = (G, X, _(z), I) where I is,_
mapping from the input parameters c to z, h z _ c = ("l ...... ,,) • 9_ .

will return "tru.¢" when later queried if zi lies on the surface.

However, if _onSm:f now represents some user-defined

predicate which may be ignorant of the systems construction
rules, then it is very unlikely to return consistent results.

The CAPRI API allows us to access a subset of the CAD

geometry engine's constructors, queries and predicates in

order lor the algorithm in our application to maintain a con-

sistent representation of the model. Implementationally, we

adopt a multi-threaded programming approach which starts

the geometry engine on its own thread in order to respond to
queries from the main triangulation thread.

Physical Space Triangulation

A variety of existing surface meshing techniques adopt a

mapl_ed-space approach lor generating surface triangula-
tions. In this approach, the surface and its bounding curves

are triangulated in a 2-D parameter space, which may or may

not have some additional scaling imposed. Ref.[18} provides

a mathematical description of the Non-Uniform Rational B-

Spline (NURBS) surfaces typically used in CAD systems.

Here we note only that an iterative method is required to

solve for the physical space coordinates of a position speci-

tied on the surface in the parameter space. This process

involves division of two (generally) high-order polynomials,

and it therefore incurs both floating-point round-off error and

error associated with tolerancing for the convergence of the

itcrative solve. As a result, computed coordinates in the

mapped space are necessarily noisy and cannot be considered

exact values. Two consequences of this approach are:

1. Since the error bounds on the input are unknown, evalu-

ation of the triangulation predicate (e.g. _inCircle ) are

unlikely to robustly produce consistent results (see Fig.
19 Ref.117], also [19] and [20]).

2. The polynomial basis for the NURB may be high-order,

and therefore small errors in parameter space may pro-

duce dramatic results in physical space - even within the
subspace for which the surface is defined. The likeli-

hood of encountering poorly conditioned mappings is

the primary reason that CAD repair software generally

attempts to re-normalize the NURBS surface and recast

it using basis polynomials with as low an order as possi-
ble[Sl.

These two observations have led the current work to focus on

physical space triangulation techniques. In this approach, we
construct a mani|bld triangulation on the surface, and evalu-

ate the triangulation predicates in 9_3. New sites are con-

structed by the CAD geometry engine and, since this output

is consistent with the system's internal predicates, it is con-

sidered exact by the external predicates of the triangulation

algorithm. The presentation in §3 places emphasis on mini-

mizing the Iloating-point error in predicate evaluation and

notes the computational requirements needed to make this
evaluation exact.

2. The CAPRI API

Our basic approach is to take a crude manifold triangulation
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Figure I, CAPRI data structured demonstrated on a simple volume with a cylindrical cutout.

of each closed volume in the CAD assembly, and improve it

until it satisfies a preset measure of mesh quality, or produces

a preset number of triangles. A variety of mesh quality mea-

sures may be defined within this framework, and this prelim-

inary investigation focuses on three such criteria. (1) The

mesh must be free from small angles (sliver triangles). (2)

Edges in the triangulation must not deviate from the underly-

ing model by more than a prescribed tolerance. (3) Length

scales on nearby (possibly disjoint) surfaces must be com-
mensurate.

2.1. CAPRI Volumes

As discussed in the introduction, CAD entities are accessed

through the CAPRI programming interlace. [15] CAPRI pro-

vides a layer of indirection such that CAD system specific

data may be accessed by an application program using CAD

system neutral function calls. Figure 1 presents an abstract

view of the entities that CAPRI provides. A cad_node is the

lowest dimensional entity and corresponds to a point in 3-

space. A cad_edge has a cad_node at both ends, Each is

directed from its origin, O, to its destination, D. Cad_edges

are not assumed to be simplicial and may follow a general

curve in space (see e5 and e6 in Fig.l). Each edge is con-
nected to two cad_face entities. In general, these faces are

composed of several loops and are not assumed planar, since

they follow the underlying parameterization of the surface. A

cad_face is composed of one or many loops, which are col-

lections of oriented edges. Loops are oriented such that the

surface of the cad_face lies inside them when they are tra-

2.a

Fac e:

11:: e l , e2, e 3, e4
12:: e 5, e6

versed in a counterclockwise circuit when viewed from a

point outside the solid. This convention permits holes in a

surface to be described by a clockwise loop. In the figure,

cad_face,ft, consists of loops 11and 12,each of which is com-

posed of cad_edge entities. The edge ordering of 12 indicates

that it is clockwise, and therefore describes a hole in fl.

Edges and laces have an underlying parameterization, and

while points may be queried for their parametric values

(u, v), details of this ruling are not exposed to the application

program.

2.2. Initial Manifold Triangulation

A central theme in the present approach is the maintenance of

a closed w)lume throughout the procedure. CAPRI returns a
simplicial decomposition of each of the m cad_face entities,

S i, where S i _ {Sl, S2..... S,,}. Each of these triangulations
are manifold within their respective cad_edges. In addition,

an indexing function, Xc', is returned for each cad_volume.

Therefore a simplicial, manifold representation of each

cad_volume, S C may be constructed by taking the union of
the decompositions of all the cad_face entities of a volume,

subject to the indexing _'c-

S C=U is i Vi_ {1 ..... m} (2)

Figure 2 displays an example of this initial triangulation for a

simple part. The manufacturing die shown has 14 cad_lace

entities and the initial triangulation, S C, has 270 triangles. As

is typical, this triangulation is quite irregular, and planar

regions are decomposed into as few triangles as possible.

cad_edge

cad_node cad_face

Figure 2. Initial closed, manifold, surface triangulation, Sc, of a CAD model for a manufacturing die. Underlying CAD
entities exposed to application program are labeled in the frame on the right.



-AIAA 99-0776 -

Extremely high aspect ratio triangles are also common in

such boundary triangulations. Figure 2.b labels selected CAD
entities on this triangulation. Notice that although some

cad_face sites may be present, this initial triangulation is

essentially a boundary triangulation and the number of trian-

gles is proportional to the number of cad_edges.

Despite the poor quality of the triangulation, the structure in

Fig.2 has several desirable properties. Namely, it is manifold,
oriented and closed. We wish to improve this triangulation by

adding sites on both the cad_edge and cad_face entities and

by enforcing an external predicate governing the type of tri-

angulation.

3. Mesh Improvement

Our approach for manifold sur|hce triangulation traces its

roots to work on quali_' triangulations of Planar Straight

Line Graphs (PSLGs) [21][22][23] and related work on quality

triangulations of manifold surfaces. [241 Work in this field

began with the efforts of Ref.[21] which presented an algo-

rithm with both shape and size guarantees. The resulting

meshes were size-optimal and had no triangle with an aspect

ratio greater than 5. In this context, the aspect ratio AR, of a

triangle, is defined as the length of the longest edge divided

by that of the shortest one. One can show that if c_ is the

smallest angle of a triangle, then

1 <AR < 2
[sinocl - -]sinot----_" (3)

Theretore o_ is frequently used to describe the quality of a

given triangle.

Before presenting the manifold triangulation technique, this

section first recounts a related algorithm for quality triangula-
tion for PSLGs from Ref.[23]. It then present a fundamen-

tally similar algorithm for triangulating curved surfaces and
note which aspects of the PLSG method have been relaxed in
the extension.

3.1. Quality Triangulation of PSLGs

While the manifold surface triangulation technique of Rup-

pert [24] and the PSLG method of Chew [23l are similar in

many respects, our manifold technique follows Ruppert's

approach more closely. Section 3.2 addresses some of the

reasoning behind this choice.

An essential feature of the algorithm is the notion of an

encroached constraining edge. As illustrated in Figure 3, a

constraining edge, O--D, is said to be encroached upon if any

other site (visible to OD) lies within the diametral circle of

the edge.

If one recalls that the circumcenter of a right triangle falls on

the hypotenuse, then its easy to show that for a triangulation
which is Delaunay or locally maxmin, a predicate for

encroachment may be formulated as a vector dot product.

Thus for similarly sized I ltoating-point data with p-bit

significands, this predicate can be computed exactly in a reg-
ister with a 2p-bit significand [2°]. In a practical sense, this

implies that as long as the edges are small with respect to

f

/ '-- / Po \

/ j, _ / .....J _X

\ / \ /

\ / \ /
\ / \ /

OD not "encroached" OD "encroached"

Figure 3. Constraining edge OD and its diametral circle. The
edge is "encroached" if any site, p, falls within the diametral
circle of OD

their distance from the origin, this predicate will be exact if

computed in double-precision, using single-precision data.

In the algorithms, _E,,,. ...... .m,j(e) denotes application of this

predicate to an edge, e. The (-) superscript is used to remind

us that since this predicate is part of our triangulation algo-
rithm, it is not native to the CAD system.

The presentation of Ref.[23] recovers the constraining edges
of the triangulation as the algorithm advances. To clarify its

relation with our manifold triangulation technique, we recast

the original algorithm assuming that it begins with a con-

strained boundary triangulation of the input vertices, V, of the

constraint edges. Furthermore, this initial triangulation is
assumed to be the constrained Delaunay triangulation of the

input sites, CqYI(V).

The algorithm is quite elegant in that it consists of only two

major operations:

I. Split a constrained edge: Add a site to the mid-point of a
constraining edge, and replace the original edge with the
two new edges in the constraint list.

2. Split a triangle: Add a site to the circumcenter of a trian-
gle, t. Note that if the triangle is obtuse, this site will not
Iall within t.

Algorithm Q: Quality triangulation of a PLSG

Input: Planar Straight Line Graph, X, with input vertices, Vm.
Target angle, a.

Output: C'./Y/(V,ut) with all angles > o_.
Initialize: Compute C'lY2ffVin). Build minimum angle priority

queue, PQmm with tpQ denoting triangle at head of
queue, having rain angle 0pQ

1. Apply OEncroached to all constraint edges:
While(any constraining edge is encroached){

Split constrained edge. Update C'/r/(V), Update PQmm"
}

2. While (Opo < _){
2.a Let p _e the circumcenter of tpo.

2.b If (p encroaches any constrainifig edge, e)
2.c Split constrained edge. Update C/Y/(V), Update PQmin"

2.d Else Split triangle tpQ:
Add p to V. Update C/Y/IV), Update PQmin"

}
3. Output C')Y/IV).

1. The qualifier "similarly sized" is necessary to guard against the
case where a coordinates of one point is less than half that of
another. Extended precision would be required in such a case.
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While simple, Ref.[23] proves that AIg.Q produces triangula-

tions with the following desirable properties.

1. Quality: An angle bound 20.7 ° is guaranteed, and values as

high as 30 ° may be achieved in practice.

2. Output Size: The size of the output triangulation is within

a constant of the optimal number of triangles required to sat-

isfy the angle criteria.

3. Size Optimality: Small input constraint edges are sur-

rounded by proportionally small triangles. Nearby triangles

have similar sizes, and the size variation of triangles in the

mesh is proportional to the distance between them.

3.2. Difficulties on Curved Surfaces

In Ref.[24], Chew presents a quality triangulation technique

which is closely related to AIg.Q. This work raises a number
of difficulties associated with the extension of the PSLG

method to curved surfaces.

AIg.Q has two salient aspects. (l) The triangulation is con-

strained Delaunay. (2) New sites are added at circumcenters.

In making these observations, Chew notes that a straightfor-

ward definition of a circle on a surface is the loci of points on
the surface which are equidistant from another point on the

surface, where all distances are measured using the geodesic

distance along the surface. While straighttorward, this defini-

tion is problematic. Distances along the surface must be mea-

sured in physical space, and will therefore be expensive to

compute on NURBS surfaces. In addition, due to the inherent

error in finding the coordinates of a point on such a surface,

robust predicates based upon this definition will be difficult

to tormulate. Finally, Chew notes that this definition has less

subtle and non-intuitive consequences. A circle whose center
lies near the base of a sharp spire, t'or example, may reach

completely around the spire without also including the tip of

the spire.

To circumvent such difficulties, the method in [24] makes use

of an alternative definition of a circle. In the plane, the three

vertices of a triangle define a unique circle. In 3-dimensions,

however, an infinite family of spheres may be passed through
those three points. Connecting the line through the centers of

this family of spheres and intersecting this line with the sur-

lace identifies a particular sphere in this family. The circum-

center of the triangle may be defined to be the loci of points

at the intersection of this particular sphere and the surface.

Once this sphere is found, then the _inCircle triangulation

predicate may be evaluated by simply computing distances in

three dimensions as a vector magnitude.

Despite the effort, problems still exist with this predicate. ( 1)
If the triangulation does not resolve the underlying surface

closely enough, the line of circumsphere centers will not nec-

essarily intersect the surface. Alternatively, it may also inter-

sect the surface in multiple locations places. (2) Computing

the intersection of this line with the surface will require an

iterative method and will therefore be computationally inten-

sive. (3) Once this intersection is successfully located on the

surtace, one must determine which triangle the point falls

inside. Since the triangulation only matches the surface at the

vertices, ambiguous situations may arise when two triangles

claim ownership of the same site (near a ridge, for example).

(4) On a curved surface, the circumcenters of two triangles

with a shared edge may not be consistent. Specifically, when
_inCircle tests one of the triangles against the opposite ver-

tex of the other, the results may not agree when the roles of
the triangles are reversed. Lemma 5 in Ref.[24] shows this

situation will arise if the normal vectors of the triangles vary

by more than Jr/2. A successful algorithm must guard

against _inCircle becoming inconsistent.

3.3. A New Surface Meshing Algorithm

These outstanding ambiguities and computational expense

motivated a search for a more straightforward algorithm. Our

method makes two fundamental changes.

• To avoid the ambiguity associated with the definition of

_inCircle, we do not attempt a Delaunay triangulation of

the curved surface. Instead we seek a triangulation which is

everywhere locally maxmin. While this may seem to consti-

tute a dramatic relaxation, recall that the goal is a practical

algorithm, and we have no reason to prefer strictly Delaunay

output triangulations. In addition, since one property of a
Delaunay triangulation is that it is maxmin, this choice is

worth investigating.

• When all angles of a triangle are acute, the circumcenter

falls within the triangle. Ownership of the new site can then

be uniquely assigned to this triangle. However, when a trian-

gle is obtuse, ownership can become less clear. Therefore we
make a simple choice: When a triangle is obtuse, we insert

the new site at the centroid of the other triangle sharing the

edge opposite the obtuse angle. Figure 4. illustrates this

insertion rule. If t i is an obtuse triangle, then the new sites are

added at the centroid of top p.

While admittedly ad-hoc, this site insertion strategy is not as

arbitrary as it may initially seem. As a particular angle of t i

opens up in the transition from acute to obtuse, the circum-

center will pass from within t i to within top p. The centroid of

topp may therefore be thought of as an approximate circum-
center of t i. Denoting the radius of the circumcircle of t i as R,

obtuse
• ........ / ,/ -- _angle

• / \ //" _\

f

/ _I \, t"l'l'-77"__

\ circumcenteroft//' circumcenterofti

t i is acute t i is acute

Figure 4. Sites are added at the centroid of a triangle if the trian-
gle is acute. Otherwise they are added at the centroid of the tri-
angle opposite the obtuse angle.
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it can be shown that if one chooses an approximate circum-

center within a distance fR of the true circumcenter, then an

angle bound of

o_ < asin (2--_ -) (4)

may still be achieved. Ref. [24] contends that even using

approximate circumcenters, angle bounds of 30 ° may be

achieved in practice.

With these changes, the manifold triangulation algorithm

becomes:

Algorithm M:

Quality Manifold triangulation of a CAD volume.

Input: Underlying CAD volume, P, with initial triangulation

S 0 and input vertices, Vm.
Target angle, 0¢.

Output: CXY_V,,,a) with all angles > o¢.

Initialize: Compute constrained locally maxmin triangulation

CXY_Vin), using cad_edge entities as constraints.

Build minimum angle priority queue, PQmm with tp( 2

denoting triangle at head of queue, having rain angle

0PQ
1. Apply _Encroached to all constraint edges:

While(any constraining edge is encroached){
Split constrained edge. Update C.X_ V), Update PQmi,.

}

2. While (0pQ < or){
2.a If (tp9 is not obtuse)

Assign t := tpo, with circumcenterp.
Else Assign t:= to. p with centroid p.

2.b If (p encroaches _y constraining edge, e)

2.c Split constrained edge. Update CXY_ V), Update PQmi,.
2.d Else Split triangle t:

Add p to V. Update CXg_V), Update PQmm"

}
3. Output CX'9_ V).

Note that when the algorithm terminates, it recovers the prop-

erties of quality and size-optimality cited after the presenta-

tion of AIg.Q in §3.1. The bound on output size, however,

depends on the site insertion strategy always inserting new

vertices within the circumcircle of tpQ, [23] and the modified

strategy will not always guarantee this, thus the algorithm

sacrifices strict proof of this property.

The new algorithm requires initialization with a transforma-

tion of the part's original constrained manifold triangulation

S C to one which is everywhere locally maxmin. If we assume

the existence of a triangulation predicate _)XN which can be

enforced for every pair of triangles sharing an edge in the tri-

angulation (similar to the application of dPinCircle), then

this initialization may be performed with edge sweeps fol-

lowed by edge-swapping when a violation is encountered.

While the possibility of multiple sweeps makes this a seem-

ingly inefficient approach, we recall that the initial complex-

ity of S C is only proportional to the number of cadedges in

the geometric structure. Thus this simplistic approach is not a

problem.

Site insertion proceeds in a manner comparable to the PSLG

algorithm. A convenient implementation makes use of the

incremental insertion strategy of Ref.[25]. However, since the

triangulation is no longer Delaunay, both forward and reverse

propagation is necessary alter edge swaps. Ref.[25] gives a

modified point placement strategy for splitting encroached

edges. Our implementation of AIg.M adopts this strategy

without modification.

3.4. Triangulation Predicates

Algorithm M rests on two new triangulation predicates. One

test a triangle for an obtuse angle, &,,t,(t) and the other,

dPXN(e) , tests if the edge, e, shared by any two triangles max-

imizes the minimum angle in either triangle. This is accom-

plished by comparison with a swapped edge, e', which

connects the opposite vertices of the two triangles. Our

approach hinges on the hope of evaluating these predicates

robustly in physical space.

Both of these predicates can be formulated with direct mea-

surement of the angles in a mesh. Since a triangle has three

points, it uniquely define a plane in three dimensions. Angle

measurement in a plane is unambiguous - despite the fact

that the triangles fl)rm a discrete manifold which is lower

dimensional than the surrounding space. Numerically, we

recall that since vertex geometry returned by the CAD engine

is considered exact, and so the error bound on the input is

identically zero.

dp,,i,(t ) is applied by a logical or accumulation of

_zj- l, j, J+ i, where j is a cyclic index running over the verti-

ces of t, j E { 1,2, 3 }. This angle predicate is formed by com-

parison of the square of the edge opposite j to that of a

hypothetical edge formed by assuming that the edges of t

incident on j form a right angle in the plane of t.

q,,,t,(t,2_) = _,,h(Z,_3) v 6oh(Z,3, ) v _,,h(Z._2 ) (5)

where

Tif{v'-v'-'[2+[v'÷'-v'12>[vJ*'-v_ '1_ (6)
Zj_ I.j,j+ 1=

F otherwise

Notice that Eq.(6) requires only subtraction and multiplica-

tion of data which is known exactly. Thus the computational

requirements for exact evaluation are the same as for evalua-

tion of the dot product for do,.,,, _,,,,, ;,,,,i in §3. I.

Evaluation of &xN(e) requires a more direct method of angle

measurement. Figure 5 shows a construction for this mea-

surement. Recalling that sin( ) is monotone over the interval

^

Figure 5. Construction for 1_[2, the square of the magnitude of
the difference of unit vectors incident on vertex j.
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[0, n/2] the construction in the figure shows that the differ-

ence of the unit vectors of the edges incident upon any ver-

tex, j, is sufficient to define a vector 3 whose magnitude

varies monotonically with the angle formed by the edgcs

incident uponj. As in the preceding two predicates, computa-

tionally, it is sufficient to evaluate only the square of this

magnitude.

The computational requirements for this predicate are some-

what less simple. The computation of unit vectors requires

robust computation of the inverse of a vector magnitude

I/]V[. Thus, exact evaluation of _OXN(e) requires software

arithmetic, like the packages in Refs.[26],[27] or [281.

Although this need must be viewed as a drawback, we note

that it is confined to a single predicate, and to a relatively

simple expression. Moreover, since the input geometry is

exact, exact computation remains a feasible strategy. In the

preliminary results shown in §4, all computation was per-

formed using only double-precision floating- point hardware,

and the option of software arithmetic was not pursued.

3.5. Edge Refinement

Algorithm M drives small angles out of the evolving triangu-

lation. In addition we wish to satisfy both chord-height and

length-scale criterion. After initially creating a triangulation

free of small angles we apply an edge-refinement procedure

to enforce these two requirements. Since the algorithm is the

same lor either of these criterion, Algorithm E considers a

generic edge-based scalar y(e). In our implementation chord-

height is defined as the square of the distance from the mid-

dle of an edge to the corresponding location on the actual sur-

face of the model (provided through CAPRI by the geometry

engine).

Algorithm E: Edge Refinement of Manifold Triangulation.

Input: Underlying CAD volume, P, with current triangulation,

CX'9_V), and vertex set, V.

Edge criteria _'.

Output: C.rY_Vout) with all edges satisfying y(e) < "/.

Initialize: Build priority queue, PQ,¢ with eeQ denoting edge at
head of queue, having y(epQ).

1. Apply el)Encroached to all constraint edges:

While(any constraining edge is encroached){

Split constrained edge. Update C)(9_V), Update PQy
I

2. While (y(epQ) > 7){
2.a Let p be midpoint of e.
2.b If (p encroaches any constraining edge, e)

2.c Split constrained edge. Update CXg_ V), Update PQT"
2.d Else Split edge e:

Add p to e. Update CX_ V), Update PQT"
}

3. Output CR'_ V).

Assuming that Re) is a static criterion, like chord-height tol-

erance or length-scale, AIg.M can then be re-applied to

CXg_V) to remove any small angles created during edge

refinement and swapping.

3.6. Length-Scale Transport

Quad/Octrees have been used extensively in unstructured

mesh generation both for proximity testing and the establish-

ment of local length scales. [29"30'31,32,33] The Cartesian mesh

generation system of Ref.[2] provides just such a mechanism.

Through the use of compact unstructured data structures, this

particular Cartesian method preserves the ability to direction-

ally refine Cartesian cells. I34] Mesh generation schemes such

as this produce geometry-refined meshes with smaller cells

near smaller features of the geometry. In addition, since it is

an embedded-boundary approach, the Cartesian mesh gener-

ator can outputs a set of cut-cells, C, which envelope the sur-

[,ace of the geometry. The triangulation output from AIg.M

and chord-height refinement provides sufficient input for

Cartesian mesh generation.

Figure 6 demonstrates the geometry-adapted Cartesian

mesh's ability to transport length-scales between disjoint

components. Since our intent is to produce a method which is

fully automated, this property is essential.

The set of Nccut-cells, C, is inserted into an Alternating Dig-

ital Tree (ADT) [35] so that any edge, e, in C.XY_ V) can locate

the subset of C which intersect it with a Iog(Nc) time bound.

The ADT returns a short list of cells, which intersect e,

C, = e n C, Since these cells may have been created through

anisotropic subdivision, we can compute an average size, h,

for the intersected cells in each coordinate direction,

j _ { 1, 2, 3 } which defines a vector length scalefitnction for

every edge in the manitold triangulation•

Nc

i h
hi(e) =- -_c k_=_ k,j (7)

hj(e) may then be used to compute the normalized excess

length, li ,of the edge in each coordinatc direction.

J

!'l

iiii ,, •

i-t_ -i_ttH
ll:ll_

I

/

/"i

Figure 6. Isotropically refined Cartesian mesh around multi-ele-
ment airtbil using method of Ref.[2]. Since the mesh is geo-
metrically adapted, it communicates length scales between
disjoint geometric entities in close proximity.

1
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I
Figure 7. isotropic (top) and anisotropic (bottom) sets of cut-
cells from Cartesian mesh generator used to specify length
scales for surface triangulation of manufacturing die example.

7j-- eJ-h/e) (s)
hfle)

l* = Max(lj, _12,13) (9)

The scalar l* is computed for each edge and inserted into the

priority queue PQ't in AIg.E for length-scale based edge
refinement.

Figure 7 displays the set of cut-cells from isotropic and

anisotropically refined Cartesian meshes for the manufactur-

ing die example from §2.2 (Fig.2). This set of cells defines

the vector length scale function for the surface via Eq.(7).

3.7. An Alternative Insertion Strategy

The cut-ceils in Fig.7 are interesting in that they suggest an

alternative to the incremental mesh improvement algorithm

of the preceding sections. Rather than incremental site inser-

tions, one can imagine an approach which simply includes

Existin_ maxmin "most nonnal'_--"-'-----_

/./'_.------_.. Pi_ t_cations

sian face

Edges of Eo linked to

cad edge entities

Figure 8. An alternative site insertion strategy based upon pierce
locations of the "most normal" edges from cut Cartesian cells
and cad_edge/Cartesian cell face pierce points.

the intersection points of the "most normal" Cartesian edges

with the surface triangulation. In order to preserve the

cad_edge features of the geometry, we augment this set with

the pierce locations of cad_edges with the laces of the cut-

cells. Figure 8 demonstrates the construction of a vertex set

in this manner.

We explore this alternative using the flap geometry and cut-

cell set for the flap geometry shown in Figure 9. The surface

triangulation formed by enforcing +x_v on this point set is

shown in Figure 10. In examination of this figure several

things are apparent. Despite the fact that the flap is swept,

twisted and inclined, the anisotropic Cartesian cell subdivi-

sion correctly introduces high-aspect ratio cells along the

flap, with vertices clustered at the leading and trailing edges

as a result of the geometry adapted Cartesian mesh. Never-

theless, the triangulation is somewhat irregular, both as a

result of swaps enforced by the OXN predicate and at loca-

tions corresponding to the interfaces between adaptation lev-

els of the cut Cartesian cells. Other triangulation predicates

(Minmax, lor example) may alleviate some of this irregular-

ity.f361f371

A truly successful implementation of this insertion strategy

would require explicit mesh smoothing passes to mitigate

these irregularities. In addition, in examining the triangula-

. . -" /,:_:ii;,_ii_i_¢i:_!;l;Zi!_2)i_

Figure 9. Flap geometry and associated set of anisotropically
generated cut Cartesian Cells

Rear view

Figure 10. Surface triangulation formed using sites of "most
normal" Cartesian edges from Fig.9 and cad_edge pierce
locations from Fig.8.



- AIAA 99-0776 -

tion at the leading edge (close-up, Fig.10) we can discern a

region of irregularity associated with the switch over of

pierce locations from horizontal Cartesian edge-pierces to

vertical edge-pierces. Mesh smoothing would be beneficial in
this area as well.

One very attractive property of this approach is that it com-

pletely decouples the final triangulation from the description

of the geometry. The final vertex set is not a function of the

initial vertex set. Theretbre, any "history" is removed from

the triangulation. The surface triangulation in Fig. 10 should

be considered preliminary, and although it has some attrac-

tive properties this approach was not aggressively pursued.

4. Results and Discussion

This section presents example meshes on several CAD parts

from a variety of sources. All the example parts were read in

their native CAD file format using the CAPRI API without

special treatment. The investigations focus on examination of

issues raised in the presentation of the triangulation algo-

rithm in §3.3, the edge refinement strategy from §3.5 and the
length scale transport from §3.6.

4.1. Minimum Angle Bound

In §3.3, Algorithm M was presented without finn proof of
termination. Moreover, the discussion noted that the modified

site insertion strategy for obtuse triangles violates one of the

assumptions that establishes a bound on the output size of the

mesh in the PSLG method. It is theretore necessary to dem-
onstrate the performance of the Alg.M to show that it both

terminates and produces meshes with an economy similar to

that of the PSLG method upon which it is based.

Figure l 1 contains a histogram of the evolution of the small-

est angle in the mesh as AIg.M proceeds on the manufactur-

30
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Number of Triangles in Manifold

Figure 11. Histogram of minimum angle during mesh evolution
using AIg.M (without the edge relinement of §3,5) tor the manu-
facturing die example presented earlier. In this example, a mesh
with a minimum angle of 25° would contain 2606 triangles.

Figure 12. Quality manilold triangulation tbr manufacturing die
example generated with Alg.M. in §3.3. Mesh improvement
terminated alter generating 2606 triangles when the mini-
mum angle in the triangulation reached 25°. Chord-height
and length-scale refinement not used.

ing die example problem used in earlier illustrations. While

this curve is far from monotone, it clearly displays the steady

improvement of the minimum angle in the mesh as the site

algorithm proceeds. The steep initial rise indicates rapid

annihilation of extremely small angles in the mesh, and the

mesh achieves a minimum angle of almost 29 ° by the end of
the histogram.

The dashed line at 25 ° highlights the first time that all angles

in the mesh exceeded this value. Tracing this value on the

abscissa shows that setting the angle bound, oq to 25 ° will

cause Alg.M to terminate alter generating 2606 triangles.

Figure 12 shows the resulting triangulation. As discussed in

§3.1 and §3.3, the presence of an angle bound ensures that

small features are surrounded by proportionally small trian-

gles (see the inset frames in Fig. 12), and that the mesh length

scale varies smoothly over the part. The smallest angle in the

mesh is 25.02 °, which corresponds to a maximum aspect

ratio of between 2.36 and 4.7 (by Eq.(3)).

While the histogram in Figure 11 shows a steady increase in

the minimum angle, there is an irregular array of downward

spikes in the profile. In the presentation of the PSLG algo-

rithm, Ref.23 included a similar histogram, and noted the

same characteristic. Consider the two triangles t I and t 2

shown at the left in Figure 13, Assume that 01 is the smallest

B_Jbr/ lnse,'tion-of site l,

at circunwenter oft I After site insertion and swapping

Figure 13. Mechanism responsible for downward spikes in histo-
gram of minimum angle as AIg.M proceeds. If01 is initially the
smallest angle in the mesh, angles 03 and 04 may be smaller
after insertion ofp and enforcement of _XN by edge-swapping.
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angle in the mesh tying in triangle t/. Furthermore, assume

that t!'s face neighbor, t2, has a small angle e 2 opposite the

shared edge which is only slightly larger than 01. Site p will

get added at tl'S circumcenter improving 01 to 20 I. After
application of the maxmin predicate _xu on the shared edge,

the swapped configuration at the right of Fig.13 may occur.

This configuration includes two new triangles with a mini-

mum angles 03 and 04 either of which may now be the small-
est angle in the mesh and may actually be smaller than the

original angle 0!.

With this behavior understood, Figures 14 and 15 present

angle histograms and example meshes for a more compli-

cated set of parts. AIg.M was run on CAD parts for the main

30 ,_
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Figure 14. Angle histograms tor AIg.M on the main element of a
transport wing(upper), and on the main flap (lower). An angle
bound of 25° would produce triangulations with 20846 and
15334 triangles on the main element and flap respectively.

Figure 15. Bounded angle triangulations of main element of a
transport aircraft wing and flap generated by AIg.M in §3.3.
Minimum angle 25 °, 20846 triangles on wing, 15334 triangles
on flap.

element of a transport wing, and a flap element for the same

wing. The main element consisted of 224 rational B-spline

curves and 36 trimmed NURBS surfaces. The flap contained

31 rational B-spline curves and 10 trimmed NURBS sur-
faces.

The crosshairs on the curves in Fig. 14 show that with a 25 °

angle bound, Alg. M will produce 20846 triangles on the

main element and 15334 triangles on the flap. Figure 15 dis-

plays these triangulations.

The histograms in Figure 14 bear close resemblance to the

one presented for the simple die example shown in Fig.l I.

All of these profiles are characterized by a sharp initial angle

improvement and then a rolling-off as the minimum angle

climbs above about 20 °. All three profiles exceed 27 °, but

reaching 30 ° seems unlikely.

The abscissa values in Fig. 14 indicate relatively large trian-
gulations as compared with the die example. The size-opti-

mality property cited in §3.1 and §3,3 implies that triangle

size must vary smoothly between different sized constraints.

In both of these examples the smallest constraint in the capri
triangulation was a factor of 104 smaller than the largest con-

straining edge, In addition, practical experience with the

algorithm indicates that larger initial triangulations, S c,

(Eq.(2)) have a proportionally slower initial rise in their angle
profiles. This seems reasonable since if the CAPRI triangula-

tion is complex there may initially be many bad angles which

need improvement. Often CAD parts are unnecessarily com-

plex tot reasons dating to the specific events in their creation.

Our experience with CAD repair software indicates that

CAPRI generally produces less complex (sometimes by an

order of magnitude) initial triangulations if the parts have

been processed by CAD repair tools. Since tolerance to poor
CAD parts is one type of robustness that we seek in this

research, neither part shown in Fig. 15 underwent such repair

prior to creation of these triangulations.

10
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Figure 16. Interior corner of manufacturing die example trian-
gulation after imposition of a chord-height tolerance of
1.xl0 -4 normalized by the maximum outer dimension of the
part. Edge refinement was performed using AIg.E. in §3.5

With the minimum mesh angle restricted to 25 °, triangles are
again restricted to aspect ratio's less than 4.7. Such an isotro-

pic mesh is very inefficient at meshing features with curva-

ture in only one dimension. Therefore, if one intends to

produce meshes for viscous computation, a substantially

smaller angle bound may be appropriate.

4.2. Chord-Height Refinement

Enforcement of the angle bound does not guarantee that the
edges are refined when they are sufficiently far from the

underlying surface. AIg.E in §3.5 presented an edge refine-

ment strategy for automatically breaking edges whose mid-

points which are Jar from the geometry. Figure 16 shows an

interior corner of the die example after the imposition of a

chord-height tolerance of 10 -4 times L, where L is the maxi-

mum outer dimension of the part. Away from the curved inte-
rior corners, the triangulation remains unchanged since the

faces of the die are planar.

4.3. Length Scale Refinement

Once the initial triangulations of Figs. 12 and 15 have been

supplemented with the addition of sites to match the chord-

height bound, the triangulations accurately describe the

geometry of the part to be meshed. These triangulations then

need refinement to reflect the length-scales brought in by the
cut Cartesian cells.

The set of anisotropically refined cut-cells from Fig.7 was

used to define a vector length scale function for each edge in

the triangulation using eq.(7). Edges were processed with

Alg.E using a priority queue based on the maximum compo-

nent of the normalized excess length function from eqs.(8)

and (9), PQt*. Figure 17 displays the resulting length-scale

adapted mesh for the die example. This manifold triangula-

tion shown contains 17384 triangles and processing of the

PQI* was halted after achieving a value of l* = 1.0. In addi-

tion to the /*, based edge refinement, the minimum angle
bound was set to 15° and a chord-height tolerance of
Ixl0-4L. In comparing this triangulation with its earlier

forms (in Figs. 12 and 16) one sees substantial refinement of

the triangulation in response to the length-scale information.

However, such a comparison also shows that application of

Top Bottom

Figure 17. Top, bottom and 3-view of manufacturing die
example geometry after length-scale refinement using
the anisotropic Cartesian cut-cells from Fig.7, 17384 tri-
angles, o_= 15", maximum chord-height set to 1.xl0-4L.

AIg.E has apparently failed to convey the anisotropy of the

cut-cells to the final triangulation (c_f Fig.7). The reasons
behind this shortcoming are obvious.

(I) Our edge-refinement uses the very simplistic strategy

of simply breaking edges at their midpoint, without con-
sulting h(e) for information regarding desired anisot-

ropy prior to point placement.
~

(2) The triangulation predicate _XN fights anisotropy after

every insertion, since it lbrces edge swaps in order to

maximize the minimum angle.

In order to use this approach for creating acceptable stretched

triangulations, then the triangulation predicate and point

placement strategies need to be modified. One interesting
approach would be to modify _XN with h(e) by applying a

scaling during evaluation. In this way, the edge-swapping

will be cognizant of the local stretching information. Such an

approach is conceptually quite similar to the locally-mapped
Delaunay methods sometimes used in 2-D. I381 Ref.[39]

examined the performance of alternative triangulation predi-
cates combined with modified site insertion rules and demon-

strated that they can be effective in generating smooth

stretched triangulations. Both of these approaches merit
investigation since they fit well within the framework of the

present algorithm, especially since the stretching intbrmafion

in h(e) is currently not utilized.

Figure 18 contains length-scale adapted triangulations lor the

main wing element and flap geometries shown earlier in

11
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Figure 18. Transport aircraft wing and flap geometries
from Fig.15 after length-scale matching as described in
§3.6. The wing and flap have 34720 and 26640 triangles
respectively. Inset frame shows matching length-scales at
the flap gap. Minimum angle 15.03°. Chord-height toler-
ance set to I x 10 -4 of the span.

Fig. 15. These triangulations were again created using a mini-
mum angle bound set to 15° which resulted in a smallest

angle of 15.03 °. A chord-height tolerance of" lxl0--4L, was
used, however, this value is somewhat lax for a serious com-

putation. Length-scale refinement was stopped at l*= 1.0.

The triangulation of the main element has 34720 triangles

while the flap has 26640. In comparing these triangulations

to those in Fig. 15 notice that the flap leading-edge length

scales have been transported through the flap gap to the flat

surfaces of the main element. The small frame inset in Fig.
18 is included to show this detail.

5. Conclusions and Future Work

5.1. Conclusions

This work focused on the direct use of CAD geometry for the
automatic generation of closed manifold surface triangula-

tions. Our approach used the CAPRI API to provide a mod-

eler independent method of interacting directly with the CAD

system's geometry engine. This approach avoids data transla-
tion which can deplete a model of topological information,

and avoids the consistency conflicts which can occur when

different geometry engines attempt to inter topology from a

parts geometry. In addition, it permits the generation of new

vertices using the same constructors which were used to cre-

ate nearby geometry already in the part, thus avoiding build-

ing an inconsistent model.

A second novel aspect of this work was the development of a

new curved surface meshing technique based upon the use of
approximate circumcenters for site insertion. The method

maintains a locally maxmin triangulation and produces a

bounded aspect ratio manifold triangulation. The algorithm

was demonstrated on CAD parts of varying complexity and

reliably produced triangulations with minimum angles in
excess of 27 °.

An edge refinement algorithm was also presented which was

used to ensure that edges in the triangulation match the

underlying part model to within a specified tolerance. Edge

refinement was also used in conjunction with an anisotropi-

cally refined Cartesian mesh to ensure that triangles on dis-

joint surfaces in close proximity maintain matching length-
scales.

An alternative site insertion strategy was examined in which

the final vertex set was taken from the "most normal" pierce

points of a geometry-adapted Cartesian mesh with an early

triangulation. This approach remains attractive since it fully

decouples the final triangulation from any intermediate mod-

els used to initially describe the surthce.

5.2. Future Research

• Despite the fact that the cut Cartesian cells define a vector

length scale function in Eq.(8), our simple (edge subdivision)

insertion strategy does not make use of this information.

Sincc the adapted Cartesian mesh was subdivided in response

_o surface curvalure, hi(e) should be able to provide more
guidance concerning the placement of new sites. Since we

intend to produce surlhce triangulations that include high

aspect ratio triangles finer control of site placement must is a
necessity. Two strategies for including this information were

cited in §4.3, as well as alternative triangulation predicates.

• Although AIg.M. produces meshes with generally smooth

length-scale variation. There is occasionally a discernible

irregularity in the triangulations. This behavior becomes

more pronounced when higher angle bounds are specified.

Similar behavior has been noted in the PSLG algorithm 1231,

although in 2-D the behavior seems less pronounced. One

possible source for this is the abrupt change in insertion loca-

tion from circumcenter to centroid (of t,,pp) if an obtuse trian-
gle is encountered. Alternative strategies should be

investigated since this behavior can degrade the efficiency of

the triangulations.

• The initial triangulation returned by CAPRI depends

strongly upon the "history" of the CAD part. Such effects are

evident in the triangulation of the main wing element in

Fig. 15, fbr example, where the outboard portion of the flap

cut-out is excessively resolved due to relics of the part's cre-

ation process. The only effective strategy we've found for
avoiding this is to "clean" the geometry using CAD repair

software. Alternative approaches should be investigated.
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